Aspects of general higher-order gravities
نویسندگان
چکیده
منابع مشابه
Higher-Order Aspects in Order
In aspect-oriented programming languages, advice evaluation is usually considered as part of the base program evaluation. This is also the case for certain pointcuts, such as if pointcuts in AspectJ, or simply all pointcuts in higher-order aspect languages like AspectScheme. While viewing pointcuts and advice as base level computation clearly distinguishes AOP from reflection, it also comes at ...
متن کاملHigher-order Aspects of Logic Programming
Are higher-order extensions to logic programming needed? We answer this question in the negative by showing that higher-order features are already available in pure logic programming. It is demonstrated that higher-order lambda calculus-based languages can be compositionally embedded in logic programming languages preserving their semantics and abstraction facilities. Further, we show that such...
متن کاملNew Energy Definition for Higher Curvature Gravities
We propose a novel but natural definition of conserved quantities for gravity models quadratic and higher in curvature. Based on the spatial asymptotics of curvature rather than of metric, it avoids the GR energy machinery’s more egregious problems–such as zero energy “theorems” and failure in flat backgrounds – in this fourth-derivative realm. In D > 4, the present expression indeed correctly ...
متن کاملHigher-order aspects and context in SUMO
This article addresses the automation of higher-order aspects in expressive ontologies such as the Suggested Upper Merged Ontology SUMO. Evidence is provided that modern higher-order automated theorem provers like LEO-II can be fruitfully employed for the task. A particular focus is on embedded formulas (formulas as terms), which are used in SUMO, for example, for modeling temporal, epistemic, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2017
ISSN: 2470-0010,2470-0029
DOI: 10.1103/physrevd.95.044010